
F07 – Linear Equations (LAPACK)

Chapter F07

Linear Equations (LAPACK)

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Notation . 2
2.2 Matrix Factorizations . 3
2.3 Solution of Systems of Equations . 3
2.4 Sensitivity and Error Analysis . 3

2.4.1 Normwise error bounds . 3
2.4.2 Estimating condition numbers . 4
2.4.3 Componentwise error bounds . 4
2.4.4 Iterative refinement of the solution . 4

2.5 Matrix Inversion . 5
2.6 Packed Storage . 5
2.7 Band Matrices . 5
2.8 Block Algorithms . 6

3 Recommendations on Choice and Use of Available Routines 6
3.1 Available Routines . 6
3.2 NAG Names and LAPACK Names . 7
3.3 Matrix Storage Schemes . 7

3.3.1 Conventional storage . 8
3.3.2 Packed Storage . 8
3.3.3 Band storage . 9
3.3.4 Unit triangular matrices . 10
3.3.5 Real diagonal elements of complex matrices . 10

3.4 Parameter Conventions . 10
3.4.1 Option parameters . 10
3.4.2 Problem dimensions . 10
3.4.3 Length of work arrays . 10
3.4.4 Error-handling and the diagnostic parameter INFO 11

3.5 Tables of Available Routines . 12

4 Indexes of LAPACK routines 14

5 References 15

[NP3390/19/pdf] F07.1

Introduction – F07 F07 – Linear Equations (LAPACK)

1 Scope of the Chapter

This chapter provides routines for the solution of systems of simultaneous linear equations, and associated
computations. It provides routines for:

– matrix factorizations

– solution of linear equations

– estimating matrix condition numbers

– computing error bounds for the solution of linear equations

– matrix inversion

Routines are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the the
F04 Chapter Introduction. The decision trees, at the end of the the F04 Chapter Introduction, direct you
to the most appropriate routines in Chapter F04 or Chapter F07, for solving your particular problem. In
particular, Chapter F04 contains Black Box routines which enable some standard types of problem to be
solved by a call to a single routine. Where possible, routines in Chapter F04 call F07 routines to perform
the necessary computational tasks.

The routines in this chapter (Chapter F07) handle only dense and band matrices (not matrices with more
specialized structures, or general sparse matrices).

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
[1]). They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult
a standard textbook for a more thorough discussion, for example Golub and Van Loan [2].

2.1 Notation

We use the standard notation for a system of simultaneous linear equations:

Ax = b (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write

AX = B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the routine documents:

x̂ a computed solution to Ax = b, (which usually differs from the exact solution
x because of round-off error)

r = b − Ax̂ the residual corresponding to the computed solution x̂
‖x‖∞ = max

i
|xi| the infinity-norm of the vector x

‖A‖∞ = max
i

∑
j

|aij | the infinity-norm of the vector A

|x| the vector with elements |xi|
|A| the matrix with elements |aij |

Inequalities of the form |A| ≤ |B| are interpreted componentwise, that is |aij | ≤ |bij | for all i, j.

F07.2 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows:

General matrices (LU factorization with partial pivoting):

A = PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is upper-
triangular; the permutation matrix P (which represents row interchanges) is needed to ensure numerical
stability.

Symmetric positive-definite matrices (Cholesky factorization):

A = UT U or A = LLT

where U is upper triangular and L is lower triangular.

Symmetric indefinite matrices (Bunch–Kaufman factorization):

A = PUDUT PT or A = PLDLT PT

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive-definite, no interchanges are needed and the factorization
reduces to A = UDUT or A = LDLT with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax = b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists essentially
of solving a triangular system of equations by forward or backward substitution; the permutation matrix
P and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization):
Ly = PT b
Ux = y

Symmetric positive-definite matrices (Cholesky factorization):

UT y = b
Ux = y

or
Ly = bLT x = y

Symmetric indefinite matrices (Bunch–Kaufman factorization):

PUDy = b

UT PT x = y
or

PLDy = b

LT PT x = y

2.4 Sensitivity and Error Analysis

2.4.1 Normwise error bounds

Frequently in practical problems, the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Ax = b, and x + δx is the exact solution to a perturbed problem
(A + δA)(x + δx) = (b + δb), then:

‖δx‖
‖x‖ ≤ κ(A)

(
‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
+ . . . (2nd order terms)

[NP3390/19/pdf] F07.3

Introduction – F07 F07 – Linear Equations (LAPACK)

where κ(A) is the condition number of A defined by:

κ(A) = ‖A‖.‖A−1‖. (3)

In other words, relative errors in A or b may be amplified in x by a factor κ(A). Section 2.4.2 discusses
how to compute or estimate κ(A).

Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the
original data, such that ‖δA‖

‖A‖ and ‖δb‖
‖b‖ are usually at most p(n)ε, where ε is the machine precision

and p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as
large as 2n−1).

In other words, the computed solution x̂ is the exact solution of a linear system (A+ δA)x̂ = b+ δb which
is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity κ(A) in understanding the sensitivity
of the solution of Ax = b. To compute the value of κ(A) from equation (3) is more expensive than
solving Ax = b in the first place. Hence it is standard practice to estimate κ(A), in either the 1-norm
or the ∞-norm, by a method which only requires O(n2) additional operations, assuming that a suitable
factorization of A is available.

The method used in this chapter is Higham’s modification of Hager’s method [3]. It yields an estimate
which is never larger than the true value, but which seldom falls short by more than a factor of 3 (although
artificial examples can be constructed where it is much smaller). This is acceptable since it is the order
of magnitude of κ(A) which is important rather than its precise value.

Because κ(A) is infinite if A is singular, the routines in this chapter actually return the reciprocal of κ(A).

2.4.3 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A
and b – that is, a pattern of elements which are known to be zero – and the bounds are dominated by
the largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max
ijk

(
|δaij |
|aij |

,
|δbk|
|bk|

)
≤ ω

where the componentwise backward error bound ω is given by:

ω = max
i

|ri|
(|A|.|x̂|+ |b|)i

.

Routines are provided in this chapter which compute ω, and also compute a forward error bound which
is sometimes much sharper than the normwise bound given earlier:

‖x − x̂‖∞
‖x‖∞

≤ ‖ |A−1|.|r| ‖∞
‖x‖∞

.

Care is taken when computing this bound to allow for rounding errors in computing r. The norm
‖ |A−1|.|r| ‖∞ is estimated cheaply (without computing A−1) by a modification of the method used to
estimate κ(A).

2.4.4 Iterative refinement of the solution

If x̂ is an approximate computed solution to Ax = b, and r is the corresponding residual, then a procedure
for iterative refinement of x̂ can be defined as follows, starting with x0 = x̂:

for i = 0, 1, . . ., until convergence

F07.4 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

compute ri = b − Axi

solve Adi = ri

compute xi+1 = xi + di

In Chapter F04, routines are provided which perform this procedure using additional precision to
compute r, and are thus able to reduce the forward error to the level of machine precision.

The routines in this chapter do not use additional precision to compute r, and cannot guarantee
a small forward error, but can guarantee a small backward error (except in rare cases when A is very
ill-conditioned, or when A and x are sparse in such a way that |A|.|x| has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five iterations are allowed.

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve
Ax = b by first computing A−1 and then forming the matrix-vector product x = A−1b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, routines are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage

Routines which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements
of the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array
of length n(n + 1)/2 – in other words, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2. It may also be used
for triangular matrices.

Routines designed for packed storage perform the same number of arithmetic operations as routines which
use conventional storage, but they are usually less efficient, especially on high-performance computers,
so there is then a trade-off between storage and efficiency.

2.7 Band Matrices

A band matrix is one whose non-zero elements are confined to a relatively small number of sub-diagonals
or super-diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme used for band matrices is described
in Section 3.3.3.

The LU factorization for general matrices, and the Cholesky factorization for symmetric positive-definite
matrices both preserve bandedness. Hence routines are provided which take advantage of the band
structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of super-diagonals or sub-diagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has kl sub-diagonals and ku super-diagonals, then L is not
a band matrix but still has at most kl non-zero elements below the diagonal in each column; and U has
at most kl + ku super-diagonals.

The Bunch–Kaufman factorization does not preserve bandedness, because of the need for symmetric
row-and-column permutations; hence no routines are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no routines are provided for
computing inverses of band matrices.

[NP3390/19/pdf] F07.5

Introduction – F07 F07 – Linear Equations (LAPACK)

2.8 Block Algorithms

Many of the routines in this chapter use what is termed a block algorithm. This means that at each major
step of the algorithm a block of rows or columns is updated, and most of the computation is performed
by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by calls to
the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on many modern
computers. See Golub and Van Loan [2] or Anderson et al. [1] for more about block algorithms.

The performance of a block algorithm varies to some extent with the blocksize – that is, the number
of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value
when the library is implemented on each range of machines. Users of the library do not normally need
to be aware of what value is being used. Different block sizes may be used for different routines. Values
in the range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block algorithm, and then the
routines use an unblocked algorithm (effectively a blocksize of 1), relying solely on calls to the Level 2
BLAS (see Chapter F06 again).

The only situation in which a user needs some awareness of the block size is when it affects the amount
of workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Available Routines

and in Section 3.5 show the routines which are provided for performing different computations on different
types of matrices. shows routines for real matrices; shows routines for complex matrices. Each entry in
the table gives the NAG routine name, the LAPACK single precision name, and the LAPACK double
precision name (see Section 3.2).

Routines are provided for the following types of matrix:

general
general band
symmetric or Hermitian positive-definite
symmetric or Hermitian positive-definite (packed storage)
symmetric or Hermitian positive-definite band
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular
triangular (packed storage)
triangular band

For each of the above types of matrix (except where indicated), routines are provided to perform the
following computations:

(a) (except for triangular matrices) factorize the matrix (see Section 2.2).

(b) solve a system of linear equations, using the factorization (see Section 2.3).

(c) estimate the condition number of the matrix, using the factorization (see Section 2.4.2); these
routines also require the norm of the original matrix (except when the matrix is triangular) which
may be computed by a routine in Chapter F06.

(d) refine the solution and compute forward and backward error bounds (see Section 2.4.3 and Section
2.4.4); these routines require the original matrix and right-hand side, as well as the factorization
returned from (a) and the solution returned from (b).

(e) (except for band matrices) invert the matrix, using the factorization (see Section 2.5).

Thus, to solve a particular problem, it is usually necessary to call two or more routines in succession.
This is illustrated in the example programs in the routine documents.

F07.6 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F07-), and show the LAPACK routine names in both single
and double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using a single
precision implementation of the NAG Library, the single precision form of the LAPACK name must be
used (beginning with S- or C-); when using a double precision implementation of the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to F07 routines in the Manual normally include the LAPACK single and double precision
names, in that order – for example, F07ADF (SGETRF/DGETRF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in Chapter
F06). Each name has the structure XYYZZZ, where the components have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran 77, REAL)
D – real, double precision (in Fortran 77, DOUBLE PRECISION)
C – complex, single precision (in Fortran 77, COMPLEX)
Z – complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

– the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage scheme):

GE – general
GB – general band
PO – symmetric or Hermitian positive-definite
PP – symmetric or Hermitian positive-definite (packed storage)
PB – symmetric or Hermitian positive-definite band
SY – symmetric indefinite
SP – symmetric indefinite (packed storage)
HE – (complex) Hermitian indefinite
HP – (complex) Hermitian indefinite (packed storage)
TR – triangular
TP – triangular (packed storage)
TB – triangular band

– the last 3 letters ZZZ indicate the computation performed:

TRF – triangular factorization
TRS – solution of linear equations, using the factorization
CON – estimate condition number
RFS – refine solution and compute error bounds
TRI – compute inverse, using the factorization

Thus the routine SGETRF performs a triangular factorization of a real general matrix in a single
precision implementation of the Library; the corresponding routine in a double precision implementation
is DGETRF.

Some sections of the routine documents – Section 2 (Specification) and Section 9.1 (Example program)
– print the LAPACK name in bold italics, according to the NAG convention of using bold italics for
precision-dependent terms – for example, sgetrf, which should be interpreted as either SGETRF (in
single precision) or DGETRF (in double precision).

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric, Hermitian or triangular matrices;

[NP3390/19/pdf] F07.7

Introduction – F07 F07 – Linear Equations (LAPACK)

– band storage for band matrices;

These storage schemes are compatible with those used in Chapter F06 (especially in the BLAS) and
Chapter F08, but different schemes for packed or band storage are used in a few older routines in Chapter
F01, Chapter F02, Chapter F03 and Chapter F04.

In the examples below, ∗ indicates an array element which need not be set and is not referenced by
the routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing array
arguments in Fortran 77.

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional
array A, with matrix element aij stored in array element A(i, j).

If a matrix is triangular (upper or lower, as specified by the argument UPLO), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by ∗ in the examples below. For example, when n = 4:

UPLO Triangular matrix A Storage in array A

’U’

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

’L’

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

a11 ∗ ∗ ∗

a21 a22 ∗ ∗
a31 a32 a33 ∗
a41 a42 a43 a44

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

UPLO Hermitian matrix A Storage in array A

’U’

a11 a12 a13 a14

ā12 a22 a23 a24

ā13 ā23 a33 a34

ā14 ā24 ā34 a44

a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

’L’

a11 ā21 ā31 ā41

a21 a22 ā32 ā42

a31 a32 a33 ā43

a41 a42 a43 a44

a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗

a41 a42 a43 a44

3.3.2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by UPLO) is packed by columns in a one-dimensional array. In Chapter F07 and
Chapter F08, arrays which hold matrices in packed storage, have names ending in P. So:

if UPLO = ’U’, aij is stored in AP(i + j(j − 1)/2) for i ≤ j;

if UPLO = ’L’, aij is stored in AP(i+ (2n − j)(j − 1)/2) for j ≤ i.

F07.8 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

For example:

UPLO Triangle of matrix A Packed storage in array AP

’U’

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

 a11 a12a22︸ ︷︷ ︸ a13a23a33︸ ︷︷ ︸ a14a24a34a44︸ ︷︷ ︸

’L’

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

 a11a21a31a41︸ ︷︷ ︸ a22a32a42︸ ︷︷ ︸ a33a43︸ ︷︷ ︸ a44

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing
the lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper
triangle by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements
are conjugated.)

3.3.3 Band storage

A band matrix with kl sub-diagonals and ku super-diagonals may be stored compactly in a two-
dimensional array with kl+ku+1 rows and n columns. Columns of the matrix are stored in corresponding
columns of the array, and diagonals of the matrix are stored in rows of the array. This storage scheme
should be used in practice only if kl, ku � n, although the routines in Chapter F07 and chapref
chapid=”F08” notintro=”yes”> work correctly for all values of kl and ku. In Chapter F07 and Chapter
F08 arrays which hold matrices in band storage have names ending in B.

To be precise, aij is stored in AB(ku + 1+ i− j, j) for max(1, j − ku) ≤ i ≤ min(n, j + kl). For example,
when n = 5, kl = 2 and ku = 1:

Band matrix A Band storage in array AB

a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55

∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗

a31 a42 a53 ∗ ∗

The elements marked ∗ in the upper left and lower right corners of the array AB need not be set, and
are not referenced by the routines.

Note. When a general band matrix is supplied for LU factorization, space must be allowed to store an
additional kl super-diagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with kl + ku super-diagonals.

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular, or ku = 0
if lower triangular.

For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, only the upper or
lower triangle (as specified by UPLO) need be stored:

if UPLO = ’U’, aij is stored in AB(k + 1 + i − j, j) for max(1, j − k) ≤ i ≤ j;

if UPLO = ’L’, aij is stored in AB(1 + i − j, j) for j ≤ i ≤ min(n, j + k).

For example, when n = 5 and k = 2:

[NP3390/19/pdf] F07.9

Introduction – F07 F07 – Linear Equations (LAPACK)

UPLO Hermitian band matrix A Band storage in array A

’U’

a11 a12 a13

ā12 a22 a23 a24

ā13 ā23 a33 a34 a35

ā24 ā34 a44 a45

ā35 ā45 a55

∗ ∗ a13 a24 a35

∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

’L’

a11 ā21 ā31

a21 a22 ā32 ā42

a31 a32 a33 ā43 ā53

a42 a43 a44 ā54

a53 a54 a55

a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

Note that different storage schemes for band matrices are used by some routines in Chapter F01, Chapter
F02, Chapter F03 and Chapter F04.

3.3.4 Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by an argument DIAG. If DIAG = ’U’
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
elements are not referenced by the routines. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have
real diagonal elements.

If such matrices are supplied as input to routines in this chapter, the imaginary parts of the diagonal
elements are not referenced, but are assumed to be zero. If such matrices are returned as output by the
routines, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions
3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper-case values (for example ’U’
or ’L’); however, in every case, the corresponding lower-case characters may be supplied (with the same
meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SGETRS (’Transpose’, . . .)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M, N or NRHS) to be passed as zero, in which
case the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A few routines implementing block algorithms require workspace sufficient to hold one block of rows or
columns of the matrix if they are to achieve optimum levels of performance — for example, workspace

F07.10 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

of size n × nb, where nb is the optimum block size. In such cases, the actual declared length of the
work array must be passed as a separate parameter LWORK, which immediately follows WORK in the
parameter-list.

The routine will still perform correctly when less workspace is provided: it uses the largest block size
allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would allow
the routine to use the optimum block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see Section
3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving
the parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely
an Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO = 0: successful termination

INFO > 0: failure in the course of computation, control returned to the calling program

If the routine document specfies that the routine may terminate with INFO>0, then it is essential to
test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG
error-handling terminology.) No error message is output.

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to −i, a message
is output, and execution of the program is terminated. (This corresponds to a hard failure in the usual
NAG terminology.)

[NP3390/19/pdf] F07.11

Introduction – F07 F07 – Linear Equations (LAPACK)

3.5 Tables of Available Routines

Routines for real matrices

Type of matrix and storage
scheme

factorize solve condition
number

error
estimate

invert

general F07ADF
SGETRF
DGETRF

F07AEF
SGETRS
DGETRS

F07AGF
SGECON
DGECON

F07AHF
SGERFS
DGERFS

F07AJF
SGETRI
DGETRI

general band F07BDF
SGBTRF
DGBTRF

F07BEF
SGBTRS
DGBTRS

F07BGF
SGBCON
DGBCON

F07BHF
SGBRFS
DGBRFS

symmetric positive-definite F07FDF
SPOTRF
DPOTRF

F07FEF
SPOTRS
DPOTRS

F07FGF
SPOCON
DPOCON

F07FHF
SPORFS
DPORFS

F07FJF
SPOTRI
DPOTRI

symmetric positive-definite
(packed storage)

F07GDF
SPPTRF
DPPTRF

F07GEF
SPPTRS
DPPTRS

F07GGF
SPPCON
DPPCON

F07GHF
SPPRFS
DPPRFS

F07GJF
SPPTRI
DPPTRI

symmetric positive-definite
band

F07HDF
SPBTRF
DPBTRF

F07HEF
SPBTRS
DPBTRS

F07HGF
SPBCON
DPBCON

F07HHF
SPBRFS
DPBRFS

symmetric indefinite F07MDF
SSYTRF
DSYTRF

F07MEF
SSYTRS
DSYTRS

F07MGF
SSYCON
DSYCON

F07MHF
SSYRFS
DSYRFS

F07MJF
SSYTRI
DSYTRI

symmetric indefinite (packed
storage)

F07PDF
SSPTRF
DSPTRF

F07PEF
SSPTRS
DSPTRS

F07PGF
SSPCON
DSPCON

F07PHF
SSPRFS
DSPRFS

F07PJF
SSPTRI
DSPTRI

triangular F07TEF
STRTRS
DTRTRS

F07TGF
STRCON
DTRCON

F07THF
STRRFS
DTRRFS

F07TJF
STRTRI
DTRTRI

triangular (packed storage) F07UEF
STPTRS
DTPTRS

F07UGF
STPCON
DTPCON

F07UHF
STPRFS
DTPRFS

F07UJF
STPTRI
DTPTRI

triangular band F07VEF
STBTRS
DTBTRS

F07VGF
STBCON
DTBCON

F07VHF
STBRFS
DTBRFS

Table 1
Each entry gives:

the NAG routine name
the LAPACK routine name in a single precision implementation
the LAPACK routine name in a double precision implementation

F07.12 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

Routines for complex matrices

Type of matrix and storage
scheme

factorize solve condition
number

error
estimate

invert

general F07ARF
CGETRF
ZGETRF

F07ASF
CGETRS
ZGETRS

F07AUF
CGECON
ZGECON

F07AVF
CGERFS
ZGERFS

F07AWF
CGETRI
ZGETRI

general band F07BRF
CGBTRF
ZGBTRF

F07BSF
CGBTRS
ZGBTRS

F07BUF
CGBCON
ZGBCON

F07BVF
CGBRFS
ZGBRFS

Hermitian positive-definite F07FRF
CPOTRF
ZPOTRF

F07FSF
CPOTRS
ZPOTRS

F07FUF
CPOCON
ZPOCON

F07FVF
CPORFS
ZPORFS

F07FWF
CPOTRI
ZPOTRI

Hermitian positive-definite
(packed storage)

F07GRF
CPPTRF
ZPPTRF

F07GSF
CPPTRS
ZPPTRS

F07GUF
CPPCON
ZPPCON

F07GVF
CPPRFS
ZPPRFS

F07GWF
CPPTRI
ZPPTRI

Hermitian positive-definite
band

F07HRF
CPBTRF
ZPBTRF

F07HSF
CPBTRS
ZPBTRS

F07HUF
CPBCON
ZPBCON

F07HVF
CPBRFS
ZPBRFS

Hermitian indefinite F07MRF
CHETRF
ZHETRF

F07MSF
CHETRS
ZHETRS

F07MUF
CHECON
ZHECON

F07MVF
CHERFS
ZHERFS

F07MWF
CHETRI
ZHETRI

symmetric indefinite F07NRF
CSYTRF
ZSYTRF

F07NSF
CSYTRS
ZSYTRS

F07NUF
CSYCON
ZSYCON

F07NVF
CSYRFS
ZSYRFS

F07NWF
CSYTRI
ZSYTRI

Hermitian indefinite (packed
storage)

F07PRF
CHPTRF
ZHPTRF

F07PSF
CHPTRS
ZHPTRS

F07PUF
CHPCON
ZHPCON

F07PVF
CHPRFS
ZHPRFS

F07PWF
CHPTRI
ZHPTRI

symmetric indefinite (packed
storage)

F07QRF
CSPTRF
ZSPTRF

F07QSF
CSPTRS
ZSPTRS

F07QUF
CSPCON
ZSPCON

F07QVF
CSPRFS
ZSPRFS

F07QWF
CSPTRI
ZSPTRI

triangular F07TSF
CTRTRS
ZTRTRS

F07TUF
CTRCON
ZTRCON

F07TVF
CTRRFS
ZTRRFS

F07TWF
CTRTRI
ZTRTRI

triangular (packed storage) F07USF
CTPTRS
ZTPTRS

F07UUF
CTPCON
ZTPCON

F07UVF
CTPRFS
ZTPRFS

F07UWF
CTPTRI
ZTPTRI

triangular band F07VSF
CTBTRS
ZTBTRS

F07VUF
CTBCON
ZTBCON

F07VVF
CTBRFS
ZTBRFS

Table 2
Each entry gives:

The NAG routine name
the LAPACK routine name in a single precision implementation
the LAPACK routine name in a double precision implementation

[NP3390/19/pdf] F07.13

Introduction – F07 F07 – Linear Equations (LAPACK)

4 Indexes of LAPACK routines

Real Matrices Complex Matrices
LAPACK LAPACK LAPACK LAPACK

single precision double precision NAG single precision double precision NAG
SGBCON DGBCON F07BGF CGBCON ZGBCON F07BUF

SGBRFS DGBRFS F07BHF CGBRFS ZGBRFS F07BVF

SGBTRF DGBTRF F07BDF CGBTRF ZGBTRF F07BRF

SGBTRS DGBTRS F07BEF CGBTRS ZGBTRS F07BSF

SGECON DGECON F07AGF CGECON ZGECON F07AUF

SGERFS DGERFS F07AHF CGERFS ZGERFS F07AVF

SGETRF DGETRF F07ADF CGETRF ZGETRF F07ARF

SGETRI DGETRI F07AJF CGETRI ZGETRI F07AWF

SGETRS DGETRS F07AEF CGETRS ZGETRS F07ASF

SPBCON DPBCON F07HGF CHECON ZHECON F07MUF

SPBRFS DPBRFS F07HHF CHERFS ZHERFS F07MVF

SPBTRF DPBTRF F07HDF CHETRF ZHETRF F07MRF

SPBTRS DPBTRS F07HEF CHETRI ZHETRI F07MWF

SPOCON DPOCON F07FGF CHETRS ZHETRS F07MSF

SPORFS DPORFS F07FHF CHPCON ZHPCON F07PUF

SPOTRF DPOTRF F07FDF CHPRFS ZHPRFS F07PVF

SPOTRI DPOTRI F07FJF CHPTRF ZHPTRF F07PRF

SPOTRS DPOTRS F07FEF CHPTRI ZHPTRI F07PWF

SPPCON DPPCON F07GGF CHPTRS ZHPTRS F07PSF

SPPRFS DPPRFS F07GHF CPBCON ZPBCON F07HUF

SPPTRF DPPTRF F07GDF CPBRFS ZPBRFS F07HVF

SPPTRI DPPTRI F07GJF CPBTRF ZPBTRF F07HRF

SPPTRS DPPTRS F07GEF CPBTRS ZPBTRS F07HSF

SSPCON DSPCON F07PGF CPOCON ZPOCON F07FUF

SSPRFS DSPRFS F07PHF CPORFS ZPORFS F07FVF

SSPTRF DSPTRF F07PDF CPOTRF ZPOTRF F07FRF

SSPTRI DSPTRI F07PJF CPOTRI ZPOTRI F07FWF

SSPTRS DSPTRS F07PEF CPOTRS ZPOTRS F07FSF

SSYCON DSYCON F07MGF CPPCON ZPPCON F07GUF

SSYRFS DSYRFS F07MHF CPPRFS ZPPRFS F07GVF

SSYTRF DSYTRF F07MDF CPPTRF ZPPTRF F07GRF

SSYTRI DSYTRI F07MJF CPPTRI ZPPTRI F07GWF

SSYTRS DSYTRS F07MEF CPPTRS ZPPTRS F07GSF

STBCON DTBCON F07VGF CSPCON ZSPCON F07QUF

STBRFS DTBRFS F07VHF CSPRFS ZSPRFS F07QVF

STBTRS DTBTRS F07VEF CSPTRF ZSPTRF F07QRF

STPCON DTPCON F07UGF CSPTRI ZSPTRI F07QWF

STPRFS DTPRFS F07UHF CSPTRS ZSPTRS F07QSF

STPTRI DTPTRI F07UJF CSYCON ZSYCON F07NUF

STPTRS DTPTRS F07UEF CSYRFS ZSYRFS F07NVF

STRCON DTRCON F07TGF CSYTRF ZSYTRF F07NRF

STRRFS DTRRFS F07THF CSYTRI ZSYTRI F07NWF

STRTRI DTRTRI F07TJF CSYTRS ZSYTRS F07NSF

STRTRS DTRTRS F07TEF CTBCON ZTBCON F07VUF

CTBRFS ZTBRFS F07VVF

CTBTRS ZTBTRS F07VSF

CTPCON ZTPCON F07UUF

CTPRFS ZTPRFS F07UVF

CTPTRI ZTPTRI F07UWF

CTPTRS ZTPTRS F07USF

CTRCON ZTRCON F07TUF

CTRRFS ZTRRFS F07TVF

CTRTRI ZTRTRI F07TWF

CTRTRS ZTRTRS F07TSF

Table 3

F07.14 [NP3390/19/pdf]

F07 – Linear Equations (LAPACK) Introduction – F07

5 References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia

[2] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition), Baltimore

[3] Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

[NP3390/19/pdf] F07.15 (last)

